
At the time of this writing, the front page of laptop.org is a carousel of beautiful
images: children the world over happily toting the colorful OLPC XO laptop. Its
moving photos tell the story of the rugged, aff ordable green-and-white computer
produced by the One Laptop Per Child project, and the impact it is having on the
developing world. Featured are a classroom in Afghanistan, a stairway outside
of a home in Nepal, a street in Palestine, and many more such scenes, full of
smiling children excitedly using their machines.

Despite the name, OLPC’s stated mission is not explicitly to distribute laptops
to every child on earth, but rather to “empower the world’s poorest children
through education.” The laptops are a means to this higher, humanitarian end
rather than an end in and of themselves. This is by no means new or unique.
The vision of the computer as an educational dynamo dates back at least to
Seymour Papert’s work on Logo at MIT in the late 60s and Alan Kay’s work that
followed closely aft er that. By 1972, Kay would produce his seminal paper A
Personal Computer for Children of All Ages, which described the then- and still-
hypothetical Dynabook computer. While mostly famous for inspiring the form
factors of modern laptops and tablets, the paper is also significant in that it
explicitly frames the Dynabook and computer programming as tools for “learning
by making”. The first speculative story Kay includes involves youngsters Beth
and Jimmy learning about gravitational physics by playing and reprogramming
a video game. Unsurprisingly, Kay and Papert were both involved in the launch
of the OLPC project in 2005, bookending their careers as pioneers of educational
computing. As the world becomes more digital, and computer literacy becomes
important for participation in society and the workforce, the image of the
computer as a universal engine of education and empowerment—almost as old
as computing itself—has only become more pronounced.

A PERSONAL COMPUTER FOR CHILDREN OF
ALL CULTURES

Ramsey Nasser, digital artist

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
22

More than most computer projects, the OLPC XO takes “localization” seriously.
In pursuit of the project’s global goals the interface of their operating system and
its documentation are available in a variety of world languages. Digging past
the surface, however, one finds that the provided programming experience is
built on the popular Python programming language, notably made up of English
language words and for which no localization is provided. Furthermore, the
XO provides a terminal program to access the underlying UNIX system and, in
the words of the project, “[allow] kids to dig deeper into their systems, issue
commands, and make modifications to their laptops.” But a UNIX terminal
interacts with utilities from the POSIX standard, all of which have English
language names, and for which no localization is provided. The dependency of
parts of the XO on a particular written language seems to fly in the face of the
goals of the project, so why is it there at all?

The fictional Dynabook is presented as an abstract, neutral platform for its users
to engage with and repurpose. But the production of OLPC XO reveals the crucial
diff erence between an idealized computer and a real one: real computers are
technical artifacts produced by thousands of engineers over hundreds of person-
years of labor. They are the accumulation of countless soft ware and hardware
components made by people who never directly coordinated with one another
in most cases, and whose work is likely being used in manners increasingly
divergent from any of their original intentions. Every one of these components
necessarily makes assumptions about itself, how it will be used, and the world
in which it will exist.

Adopting UNIX and Python were certainly pragmatic and eff ective design
decisions for the XO. But those technologies and others turn out to have deeply
rooted assumptions around the English language that the OLPC project cannot
meaningfully alter, and the result is that if any of the smiling children from
Afghanistan, Nepal, or Palestine were curious enough to pull back the layers
of their laptops, they would invariably encounter a language foreign to them.
Could OLPC have made diff erent decisions? If the humanitarian project poised
to empower the world’s poorest children produces machines that carry a bias for
a particular written culture, what other fields of computing do the same? Does it
matter? How empowering can a computing experience in another language be?
And is an entirely non-English computing experience even possible?

VISIBLE BIAS

Another corner of computing exhibiting a surprising and highly visible linguistic
bias is digital typography. Many production-grade typesetting systems use a
simple text-layout algorithm that works something like this: Given a font and
text to display, for each character of the text:

 1. Look up the character’s glyph in the font
 2. Display the glyph on the screen
 3. Move the cursor to the right by the width of the glyph

This approach is used in high profile projects including ImGui1and Three.js2,
and it eff ectively bakes in the assumptions that every character has exactly one
corresponding glyph, and that text flows in a single direction. These assumptions
are simple to implement and suit the Latin script that these systems were
designed for, but fail for other languages. The Arabic script in particular presents
something of a worst-case scenario: unlike Latin, Arabic flows from right-to-left
and in certain circumstances glyphs are positioned vertically, and unlike Latin,
Arabic is always cursive, meaning the same letter will have a diff erent glyph
depending on its surrounding letters. Other scripts like Devanagari and Thai are
similarly poorly served and cannot be rendered correctly without considerable
additional work.

This contributes to the consistent public butchering of non-Latin text by digital
typesetting soft ware. I maintain a blog at nopenotarabic.tumblr.com to keep
track of examples of these issues as they aff ect the Arabic script. Examples of
highly visible rendering failures include the Athens Airport, Pokemon Go, a Lil
Uzi Vert video, Coke ads, Pepsi ads, Google ads, Captain America: Civil War, and
anti-Trump art, among others (see Figures 1 and 2).

The Arabic in each example exhibits the exact same error: the text is correctly
spelled but rendered backwards (i.e. from left -to-right), and none of the letters
are joined. The resulting text does not approach legibility and may as well be
chicken scratch to an Arabic reader. What’s most likely happening in every one of
these cases is that well-meaning but non-Arabic-speaking graphic designers are
pasting Arabic language text into their graphics packages which is not equipped
for it, and, seeing something vaguely Arabic-looking with no error message,
considering their job done and moving on.

The experience of seeing text like this in public is a deeply hurtful reminder to
every Arabic reader that the digital world was not built for them, and that their
culture is an aft erthought at best. Seeing text like this in an otherwise high budget
movie or video game is its own kind of cultural violence, making a mockery of a

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
24

script that is native and even holy to many. It is a communication by non-Arabs
for non-Arabs, and it reveals a willingness to use Arabic as a cultural prop, but
none to do the work to get it right.

These failures happen in two places. First off , they’re evidence of a lack of
diversity in production and graphic design firms. Had there been Arabs or
Persians or Pakistanis present in the design or decision-making process or even
consulted as subject matter experts these mistakes would have been caught
immediately and most likely addressed. I can speak from personal experience
and say I know that my presence as an Arab on or adjacent to soft ware projects
allowed me to point out incorrect rendering and prevent butchered script from
going public on more than one occasion.

Second, the tools that are commonly available and claim to handle “text” have
failed because instead of actually handling all text, they were really only designed
and tested for the Latin alphabet. Instead of issuing a warning when faced with

Figure 1

non-Latin text they did not support, they displayed a butchered version of the
script that was similar enough to the real thing to fool the designers in charge.
Adobe products before the Creative Cloud era and major game engines like Unity
3D and Unreal are all guilty of this. Technical solutions exist, but engineers have
been slow to update large legacy codebases, and the problem persists.

INVISIBLE BIAS

Although errors in text rendering get splashed across the billboards and screens
of the world, bias towards the English language is deepest in the less visible
world of computer programming languages. And while text rendering is slowly
getting better, the situation is much more bleak in the world of programming,
where it is much harder to find a toehold for hope.

Every programming language in serious use today is based on words and
punctuation taken from the English language and writing conventions. In order
to use these tools, some knowledge of English is a requirement. In order to use
these tools most eff ectively, actual proficiency in English is unavoidable. This
favors programmers natively familiar with English over others and makes a truly
inclusive and culturally neutral programming experience impossible.

As concrete examples, consider these three recursive implementations of the
Fibonacci sequence in Python, Swift and Ruby taken from the Rosettacode
project:

Figure 2

26

Python

def fi bRec(n):
 if n < 2:
 return n
 else:
 return fi bRec(n-1) + fi bRec(n-2)

Swift

func fi bonacci(n: Int) -> Int {
 if n < 2 {
 return n
 } else {
 return fi bonacci(n-1) + fi bonacci(n-2)
 }
}

Ruby

def fi b(n, sequence=[1])
 n.times do
 current_number, last_number = sequence.last(2)
 sequence << current_number + (last_number or 0)
 end
 sequence.last
end

These languages are useful as specimens of the dominant family of programming
languages as of the time of this writing, but the following critique will apply to
every language in contemporary use. Full and abbreviated English language
words abound, and they can broadly be separated into two categories:
keywords, and identifiers.

Most languages provide some set of basic built-in functionality that is not
subject to creation or modification by the user. Syntax for this functionality is
provided via keywords, parts of the language that are “baked in” and receive

special treatment by the interpreter or compiler. Examples of these in the above
examples are def in Ruby and Python (short for “define”) and func in Swift (short
for “function”) introduce new functions. if and else in Python and Swift denote
conditional branches to control the flow of program execution. return in Python
and Swift cause a function to terminate and produce a result. Finally, while
Python uses indentation to denote the start and end of its blocks of code and
Swift uses curly braces, Ruby uses the English word end to mark the end of a
block started by a def or a do keyword.

Identifiers are names that the programmer assigns to functions, values, and data
structures. It is up to the programmer to define them, though the language will
impose restrictions on what constitutes a legal identifier. In these examples,
each function is given a name fibRec (short for “fibonacci recursive”), fibonacci,
and fib, by the programmer. In theory they could be anything, though the chosen
names convey the intent of the functions well. A bit trickier are the identifiers
last, times, and println. These are names of functions that are provided by
the standard library of the language, a set of useful utilities included with the
language itself that allows programmers to be productive right away without
having to reinvent standard operations. They are technically not treated
diff erently from a programmer’s own functions, and in theory could be replaced,
though in practice this can be a challenge and is generally not done.

This distinction is important because it separates the English language
content of modern code into two categories: one which is an intrinsic part of
the programming language itself and one which is at least in theory subject
to change from the outside. At first glance, the former category seems to be
the more entrenched one, requiring entirely new languages to be designed to
introduce new keywords. That was my first intuition, but with time I came to find
that the latter category, the one of user-defined names, is the insurmountable
challenge that makes large scale non-English programming impossible.

قلب: لغة برمجة

Despite growing up in Lebanon speaking Arabic and studying Computer Science
in Beirut, none of this was immediately obvious to me. I had the privilege of
being proficient in English for most of my life, so I never gave much thought to
the fact that every programming language I had ever seen shared a common
linguistic heritage. When I moved to New York for graduate school my research
took me towards designing better languages for new programmers. Initially my
focus was on moving away from the old syntaxes and semantics of the 70s and
towards something more modern. But with time I realized that every design for
a new language I conceived of used English language words pervasively. The

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
28

English-centric assumptions ran deep enough to color not only my present, but
also my imagination for diff erent futures. I started to wonder who were these
“new programmers” for whom I was designing, and what was the eff ect of the
natural language their programming experience based on.

To probe this question and confront my own biases I became interested in
designing a non-English programming language for non-English speaking new
programmers. I picked Arabic as it is my native language and what I know best,
and I knew that I had to make a new language in order to get away from the
English keywords baked into all existing languages.

The language I built was called قلب, pronounced qalb or ‘alb in the Lebanese
dialect that I speak. The word means “heart” and is a recursive acronym for :قلب
برمجة pronounced ‘alb: lughat barmajeh, meaning “heart: a programming ,لغة
language.” This is what the Fibonacci function from above looks like.

� (لامدا (ن)
(حدد فيبوناتسى�

 (إذا (أصغر؟ ن ٢)
ن

� (طرح ن ١))
(جمع (فيبوناتسى�

� (طرح ن ٢))))))
(فيبوناتسى�

With support from the Eyebeam Art and Technology Center, I developed the قلب
interpreter towards the end of 2012. It was crucially important that قلب not be
a speculative project, but a real functioning programming language. I wanted
to go as far as I could following all the rules of classic language design and
implementation to understand why deviating from English never happens in
practice.

 is, by design, a boring programming language. It is a text-book Scheme قلب
interpreter based on Peter Norvig’s Lispy—the kind a first year Computer
Science student might turn in for an assignment. Its sole deviation from Norvig’s
interpreter is in using a non-English language with a non-Latin script as its basis,
treating the rest of the language as the control in the experiment.

In some ways قلب succeeds in providing a non-English programming experience.
First off, it provides Arabic keywords in place of the more ubiquitous English
ones. if becomes إذا, def becomes حدد, and even mathematical operators like
+ and - are written out as Arabic words جمع and طرح. Furthermore, the parser
will reject user supplied identifiers that contain anything but Arabic letters,
effectively requiring every visible word in the language to be in Arabic. And with
the Arabic numerals used in Latin languages replaced with the Indic digits more
common in Arabic, قلب’s rejection of English is complete.

This small change is enough to cause serious problems, however. The project’s
source code is hosted at github.com/nasser/--- rather than the more correct
github.com/nasser/قلب because GitHub requires ASCII-only project names,
and collapses non-ASCII characters into hyphens. Text editors are easily
confused by Arabic script, often failing to correctly remap the arrow keys and
displaying source code in a manner reminiscent of the nopenotarabic blog.
Similarly, terminal emulators used to interact with command line tools can be
stumped by the presence of Arabic text. These failings and more make the act of
programming in قلب tedious and error-prone compared to programming in the
better supported English based languages. By choosing a language other than
English as its basis, قلب reveals hidden linguistic biases in programming tools
that otherwise “just work.” It is not a language a programmer could ever be
comfortable or productive in as a result.

These frustrations alone are not enough to doom the whole project, however.
With time and effort, better text editors and terminal emulators can be written,
and the assumptions that web hosting platforms make can be revised. What
makes قلب or any project like it impossible to succeed at scale rather than merely
difficult is something much deeper, and ultimately, much less technical.

THE OBJECTIVE BECOMES SUBJECTIVE

Computers are fundamentally number processing machines. As a piece of
physical hardware a CPU is really only capable of basic operations on numeric
data, like arithmetic, loading numbers from memory, and writing numbers to
memory. When people point out that computers are “just ones and zeroes” this
is likely what they are referring to: the binary representation of numbers that a
computer manipulates. This is the closest computers come to being truly neutral
devices.

The problem is that people generally want their computers to be more than
giant calculators. Early computers were just that: engines to compute bomb
trajectories and crack enemy encryption during war. But as the decades passed
and they became more widely available and integrated into people’s lives their
tasks grew while their fundamental architecture remained largely unchanged.
Modern computers seem to handle a lot more than numbers, from text to images
to audio and video, but all of that data is still represented numerically at the
level of the machine. And while numbers do have a measure of objectivity to
them, the manner in which non-numerical data is represented numerically is
completely subjective.

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
30

Representing Writing

Take text, for example. Text can be represented digitally as a sequence of
numbers by assigning a number to each character in a natural language. The
crucial question is: which numbers should represent which characters? Pure
mathematics has nothing to say here because the mapping is arbitrary. It does
not matter as long as it’s consistent. If you decide that 0 should be ‘A’ and 1
should be ‘B’ and so on, you’ve successfully represented text as numbers. In an
isolated context, there’s little more to it than that. But as soft ware is confronted
with other soft ware it is forced to communicate, and if everyone invents their
own digital representation of text, their programs will not be able to share
textual data. If a program designed using the above mentioned representation
received text from a program that decided that 0 should in fact represent ‘Z’ and
1 should represent ‘Y’ and so on, it would misinterpret the data. In this case,
neither program would have done anything technically wrong, but the failure
rather would have come from the human programmers’ lack of agreement.

This level of coordination is crucially important for the interoperation of
computer systems. Historically, national standards bodies would define text
encodings for a nation’s computer systems to use. With the advent of the
internet, even this approach became insuff icient, as soft ware had to deal with
textual data from other nations. The Unicode Consortium was formed in 1991 to
define a single encoding for all human writing systems: the Unicode Encoding.
At its heart, the Unicode Encoding is an enormous table mapping numbers to
characters in diff erent scripts that almost every computing system in use has
agreed upon. This allows text to be processed by computers as numbers, but
the subjective meaning of those numbers comes this international agreement
negotiated far and away from inside a CPU.

It is through assigning meaning to numbers that human bias and history to creeps
into soft ware. And Unicode itself is far from perfect. For example, for historical
reasons Latin characters are assigned the lowest numbers and as a result can
take up less space in memory than characters in other languages. To preserve
space in the encoding, Han characters “common” to Chinese, Japanese, and
Korean are assigned the same number, making distinguishing national variants
diff icult in some cases, and hurting Unicode’s popularity in East Asia. There is
consistent debate around new writing systems, and the decision around what
language gets added to the standard is a deeply human, deeply political one.

The Second Hard Problem In Computer Science

Computer programming is an exercise in managing enormous amounts of
complexity. The stream of millions if not billions of binary numbers needed
to execute a non-trivial program at the level of a CPU immediately dwarfs
the human mind. In order to make sense of anything within a finite lifespan,
programmers use programming languages to act as a layer between themselves
and the machine that will run their code. Their programming languages present
a suite of tools more palatable to human thinking to express programs that will
eventually be turned into streams of numbers a computer expects. One of the
most prevalent and powerful of these tools is the ability to name things.

Assigning a name to a procedure or data structure makes it easier to think about
and reuse. Compare reasoning about “the function at address 9036724” to “the
print function”, or “the value at off set 24” to “the ‘name’ field of the ‘Person’
record.” Programming languages perform this transformation when compiling
a programmer’s code into machine code, and in general the particulars of this
process can safely be regarded as an implementation detail and paid no mind.
Programmers as a result are given this convenient abstraction to work within,
where code and data can have meaningful names, and the computer can
continue to process numbers as it always has.

Names also facilitate a crucial kind of collaboration in soft ware. Programmers
oft en share useful code they have written as a libraries, also known as frameworks
or soft ware development kits in some contexts. By learning the names of the
procedures and data structures in a library other programmers can build on
the work of the original authors and avoid redundant eff ort. Libraries also
provide mechanisms for a programmer’s code to talk to an operating system or
hardware, like Apple’s iOS Soft ware Development Kit, or IEEE’s POSIX standard.

It is important to stress that modern programming is only possible because of
this collaboration. A programmer today is only able to write an application “from
scratch” in less time than ever before because they are building on decades of
existing code written by programmers they’ve never met, published as libraries.
Without sharing code, every programming endeavor would have to start from
the level of the hardware every time, and progress that transcends an individual
project would be impossible.

Another important detail is that procedures and data structures in libraries must
be accessed by way of the names they were assigned by their original author.
These names fall in the category of identifiers discussed earlier. They are subject
to definition by the original programmer of a library, and in theory could be
anything the language considers a legal identifier. But a user of a library must
include the exact names chosen by the original author in their own code and

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
32

cannot exchange them for anything else. Put another way, the names used in
libraries are not merely decorative or explanatory, they are an essential part of
the library itself. Even more, the wider the use a library finds the more incentive
there is to never change any of its names, as that would require rewriting any
code that used the old names, and the amount of labor involved could be
intractable. For example, consider the function malloc from the POSIX standard.
malloc is a standard way for a program to request memory from an operating
system. The name is cryptic to new programmers, but it is short for “memory
allocate” and contractions like that were popular in the programming of decades
past. But changing malloc to, say, the arguably more readable memoryAllocate
is impossible as it would require the billions of lines of code deployed around
the world already referring to malloc to be updated.

This inertia extends beyond libraries and into protocols, another realm of
soft ware coordination. Protocols are agreements between programmers on the
formatting of data so that soft ware systems can communicate. Many of them
have no linguistic properties, only specifying the order of bytes numerically.
But some so-called “readable” protocols do encode data as language, and
are subject to the same problems as libraries. An example is the RFC 2616
specifying the Hypertext Transfer Protocol, HTTP or more commonly “the Web.”
HTTP uses named “headers” as part of the communication between a server
and a browser. Each header has a name and a value. Examples of header names
include Location, Retry-Aft er, Last-Modified, and If-Modified-Since. A system
participating in HTTP as a server or browser must use these exact headers with
their punctuation, spelling and capitalization or it will be ignored for generating
invalid data. Like libraries, these names are a hard requirement of the protocol,
and no substitution is possible without creating a new protocol. As one of the
most widely distributed protocols on earth, these names are practically eternal,
to the point that even spelling mistakes in the original specification cannot be
changed anymore. One of the HTTP headers is Referer, missing an r, but fixing
that typo in every server and browser on the planet would likely be prohibitively
expensive at this point.

Indeed names are so important that Kay’s description for the programming
language of the Dynabook revolves almost exclusively around them

The use of this language is essentially divided into two activities: 1. giving
names to objects and classes (memory association), and 2. retrieving objects
and classes by supplying the name under which they had been previously
stored. A process consists of these (activities) and is terminated when there
are no longer any names under scrutiny.

Although all of such a language can be easily derived from just these two
notions, a few names would have an a priori meaning in order to allow
interesting things to be done right away.

And Computer Scientist Phil Karlton’s famous joke uses them as a punchline

There are only two hard things in Computer Science: cache invalidation and
naming things.

Naming things is terribly important and difficult, but not for the reasons most
Computer Science texts get into. Absent from most conversations about
names in programming is how deeply cultural the act of naming something
is. Historically, naming a territory was part of the spoils of war, attested to by
dozens of cities named “Alexandria” from Egypt to Afghanistan left behind by
Alexander the Great’s global conquest. Names attributed to a thing also encode
the perspectives of the namer. What Westerners refer to China is known to its
indigenous population as Zhōngguó, meaning “Central Kingdom.” The name
China likely comes from the Sanskrit or Persian names for the long-passed Qin
dynasty. My own personal name, Ramsey, was deliberately chosen by my parents
to be pronounceable in the West and in my native Lebanon (رمزي, Remzi, in Arabic)
as they imagined my future before I was even born. Naming is a deeply human
act that records history and language and can be poetic, beautiful, violent, and
just about anything but neutral.

And therein lies the problem. Names are what allow human minds to
comprehend and manipulate the vast complexity of computing, and modern
programming is only made possible by building on existing systems. This
necessitates using protocols and libraries built by others and invoking names of
their choosing in any new code. As there is no such thing as a culturally neutral
name, programmers today are forced into familiarity with the written culture of
programmers past. The examples earlier from POSIX and HTTP had their roots
in the English language that their authors were fluent in, and this is true of every
library and protocol in contemporary use. Programming is always a social and
collaborative act. Even when one is working alone, a programmer is always
indirectly collaborating with the thousands of programmers that came before
them and adapting the systems they left behind to new uses. The progress made
at American organizations like Bell Labs and Xerox PARC from the 60s onward
gave us the foundations of modern soft ware, but also enshrined the culture of
those engineers into every programming system that followed.

The fact that using English language names is unavoidable when interacting
with libraries and protocols is what makes قلب, and any project like it, ultimately
doomed to failure. Non-English programming projects are confronted with an
impossible choice: cling to your conceptual and political purity and be cut off

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
34

from the world of software, or abandon purity, allow English identifiers, and
defeat your own purpose for existing. قلب itself is only able to implement basic
games and browser interactions by maintaining a bridge between itself and
JavaScript code internally, though this is effectively a cheat, and there is no way
to expose this mechanism to the programmer. Purely non-English languages
could never talk to the web, or email, or any other protocol based on English
language. They could not build on the sixty years of software libraries written
using English names, and would have to reinvent it all from scratch themselves,
siloing them off from the rest of the world and from history, which is both
unrealistic and undesirable.

The reality is that programming will most likely remain dominated by English
indefinitely, and familiarity with the language is a prerequisite for entrance
into the software engineering industry. A true Computer For Children of All
Cultures, a computing experience where a learner could pull back layer after
layer of software and never encounter anything but their own written culture is
not meaningfully possible unless their written culture happens to be American
English. When I think about قلب and the possibility of a young Arab learning how
to program in their own language, only to inevitably outgrow the limitations of
the system and eventually realize that to become a “real” programmer they’d
have to learn English after all, it breaks my heart. That isn’t a moment I want
to craft for anyone, and why I consider قلب an impossible project. The door to a
non-English programming experience is closed now, if it was ever open, and as
time passes and more software gets written, its closes tighter still.

THE DIFFICULT PROBLEMS
ARE NEVER THE TECHNICAL ONES

Accepting that the problem is not technical or computer-specific, but cultural
and linguistic is a step towards imagining diff erent futures. The central question
is not “how do we build non-English programming experiences?” but rather
the much trickier “how do we facilitate communication across linguistic
boundaries?” A definitive answer is diff icult, but there are a few non-solutions
that can be discarded right away.

First off, projects like قلب that attempt to do what English-based programming
does but in another language are not the way forward. As demonstrated above,
the deep reliance on named things in programming reveals a flaw in the premise
of such projects. But even if they could be overcome, investing an enormous
amount of effort to add a single language to the pantheon of programming is
beside the point. At best, it gets us towards A Personal Computer For Children of
Some Cultures—whichever cultures can afford to invest in reinventing the history

of software engineering—which is a much less compelling goal. Recreating
existing power structures with a different group on top is not an act of liberation.

Picking a “common” auxiliary language on which to build programming
languages on is also likely a dead end, primarily because such a language does
not exist. Esperanto gets framed as such, but its script and grammatical structure
are decidedly European and hardly global. A true auxiliary language for the
people of the world that would be appropriate to consider as the foundation
for a future of programming would borrow much more from Chinese, Hindi,
and Arabic. The absence of such a language and the diff iculty in designing and
popularizing one makes this a poor way forward as well.

Finally, the more pragmatic-minded might suggest a system that involves
automatically translating identifiers from the English-based ecosystem to the
languages of the world. It’s important to reject this on both technical and political
grounds. Technically, machine translation is poor to the point of being unusable
in most cases, and programming is full of made up words. For example, what is
the Pashto translation of AbstractSingletonProxyFactoryBean3? The technical
shortcomings reveal the political problems: a translation based approach makes
non-English languages second class citizens of the programming world. “Real”
programming would continue to be done in English, while translations were
generated for everyone else, modulo quality of translation. Again, this isn’t true
equity, and not a terribly exciting goal to work towards.

None of these approaches meaningfully begin to build the bridge across
linguistic gap between human beings that would be required for a truly equitable
programming experience. Ideally, the languages of the world could pool together
and build on each other. Code written in Arabic could use code written in French,
which could build on code written in Japanese. With no specific natural language
receiving special treatment, all languages could be treated equally, and a new
common programming experience could emerge from it all.

This is a fantasy, but there have been moments in the human history where
common languages emerged out of necessity. From the 11th to the 19th century
sailors and traders around the Mediterranean spoke a language called sabir or
lingua franca, an organic blend of Italian, Spanish, Portuguese, Berber, Arabic,
Turkish, and Greek. This language was not designed but rather emerged naturally
from the interactions of merchants from diff erent cultures trying to do their jobs.
Though far from equitable or utopian, it was a situation where one side could
not easily assert complete linguistic dominance over any other, resulting in an
emergent new means of communicating.

TE
CH

N
O

LO
GY

 A
S

CU
LT

U
RA

L
PR

AC
TI

CE
DECOLONISING THE DIGITAL

DECOLONISING THE DIGITAL
36

What would a lingua franca for programming look like? How does one design
a programming language to emerge naturally from its users as opposed to
being passed down unchanged from the past? It is hard to say. Such a language
would face all the challenges mentioned here, and be incompatible with most
current internet protocols and soft ware ecosystems. But if it could promise a
truly equitable programming experience upon which to build a real Personal
Computer For Children Of All Cultures, it just might be worth hitting the reset
button.

Ramsey Nasser is a computer scientist, game designer, and
educator based in Brooklyn. He researches programming
languages by building tools to make computing more
expressive and makes work that questions the basic
assumptions we make about code itself. His games playfully
push people out of their comfort zones, and are often built
using experimental tools of his design. Ramsey is a former
Eyebeam fellow and a professor at schools around New York.

1. Available at: https://github.com/ocornut/imgui/blob/
fe5347ef94d7dc648c237323cc9e257aff 6ab917/imgui_draw.cpp#L2666

2. Available at: https://github.com/mrdoob/three.js/blob/
f81506e172571ab106d0164530bbc1a4802fc2d4/src/extras/core/Font.js#L63

3. Available at: https://docs.spring.io/spring/docs/2.5.x/javadoc-api/org/springframework/aop/
framework/AbstractSingletonProxyFactoryBean.html

A PERSONAL COMPUTER NOTES

Figure 1: Pokemon Go screenshot (Nassar, 2016), accessed from: https://nopenotarabic.tumblr.
com/post/149021392583/a-wild-pok%C3%A9mon-go-appeared-it-used-common-arabic

Figure 2: Pepsi Ad screenshots (Nassar, 2017), accessed from: https://nopenotarabic.tumblr.
com/post/159231568203/nothing-says-love-like-butchering-a-language

A PERSONAL COMPUTER FIGURES

